mppss.ru – Все про автомобили

Все про автомобили

Пригожин синергетика. И. Пригожин. Синергетическая парадигма. Теория самоорганизации

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Синергетика- это комплекс наук, которые занимаются изучением процесса самоорганизации систем и их составляющих: подсистем. Их возникновения, поддержания, устойчивости и распада.

Синергетическая теория, получившая в настоящее время признание в мировой науке, - новый концептуально-аналитический подход к миру, для которого характерна фундаментальность методологического содержания. Синергетическая методология дает возможность поиска принципов самоорганизации сложных систем, закономерностей их эволюции и взаимодействия. Она базируется на введенном П. понимании необратимости времени, что связано с отказом от ньютоновского подхода ко времени как к феномену обратимому и с коренным переосмыслением понятия энтропии. Согласно синергетическому подходу, одни системы вырождаются в процессе эволюции, другие развиваются по восходящей линии. Необратимость системы начинается тогда, когда сложность эволюционирующей системы превосходит некий порог. Такой подход к эволюции позволяет биологии и физике находить множество аналитических точек соприкосновения.

Основные постулаты:

1. Все существующее- не что иное, как бесконечное количество открытых нелинейных систем разных уровней организации. Системы развиваются от простых к сложным, от адаптивных к эволюционирующим.

2. Связь между различными системами можно определить, как хаос.

3. Когда несколько систем объединяются, возникает новая. Причем новая - не сводится к сумме составляющих ее частей.

4. когда системы переходят от состояния хаоса к состоянию порядка, они ведут себя одинаково.

5. Развивающиеся системы всегда открыты и обмениваются энергией с окружающей средой.

6. однако, если система становится неравновесной, она периодически попадает в так называемые "точки бифуркации", где ее дальнейшая судьба становится не предсказуемой и полностью завист от любых случайных факторов (вплоть до разрушения).

Синергетика - это междисциплинарноенаправление научных исследований, задачей которого является изучение природных явлений и процессов на основе принциповсамоорганизациисистем.

Термин «синергетика» был введен немецким физиком Г. Хакеном в 1973 г. в докладе на первой конференции, посвященной проблемам самоорганизации, а в 1980г. вышла в свет его работа «Синергетика», сделавшая его основоположником нового теоретического направления. Выступая в 1982 г. на конференции по синергетике в Москве, Г. Хакен подчеркивал, что синергетика должна направить свой поиск на нахождение общих детерминант природных и социальных процессов, поскольку существуют одни и те же принципы самоорганизации различных по своей природе систем: от электрона до людей.

Большой вклад в развитие синергетики внес бельгийский ученый русского происхождения И.Пригожин. За работы в области термодинамики неравновесных физико-химических процессов ему была присуждена Нобелевская премия. Самая знаменитая работа И.Пригожина, написанная им совместно с биологом И.Стенгерс, носит симптоматичное название «Порядок из хаоса» (1986 г.).

Основные принципы синергетики:

1. все системы являются открытыми,

2. неравновесными,

3. Нелинейными (Нелинейные системы описываются нелинейными уравнениями).

4. «все связано со всем» - идея ранее была характерна для восточного мировидения. В рамках восточного мировидения каждый фрагмент вселенной имеет равный вес, нет ничего случайного.

Основные понятия синергетики:

Бифуркация. Это выбор пути развития системы; точка бифуркации представляет собой пункт выбора путей развития системы, она описывается с помощью нелинейных дифференциальных уравнений, имеющих ветвление решений.

Флуктуация (возмущение). Понятие обозначает случайное отклонение мгновенных значений величин от их средних значений; одни флуктуации создаются внешней средой, другие – самой системой.

Аттрактор . Это относительно устойчивое состояние системы, притягивающее к себе (на определенной стадии эволюции) множество траекторий системы.

Хаос. В синергетике хаос не есть источник деструкции, а представляет собой причину спонтанной самоорганизации; это не бесформенное состояние, а сверхсложноорганизованная последовательность, нерегулярное движение с непериодически повторяющимися траекториями, где для корреляции пространственных и временных параметров характерно случайное распределение.

Случайность. Она представляет собой конкретно-особенное проявление неопределенности, имеющее место в любых системах. Отдельные явления могут изменить свои свойства и качества независимым образом, не детерминированным характеристиками других явлений; это обусловливает непредсказуемую множественную вариативность возможных траекторий будущего развития.

Цель синергетики – создать всеобщую теорию развития (ранее была диалектика), для управления всеми процессами, развитием природных, общественных и человеческих систем.

Философское значение.

Синергетика опирается на принципы системности мира, его целостности, всеобщей взаимосвязи (все связано со всем), из которых выводились общие закономерности функционирования физических, химических, социальных, биологических процессов, а также сценарии поведения отдельного человека. Другими важнейшими основаниями синергетики стали принципы открытости, нелинейности (многовариантности и необратимости), неравновесности систем и самоорганизации (все открытые, неравновесные, нелинейные системы при определенных условиях проявляют свойства самодостраивания, самоизменения; в этом смысле физические и химические процессы ведут себя как живые организмы).

Сегодня идеи синергетики используются почти во всех областях науки, и сама синергетика претендует на роль новой парадигмы (греч. paradeigma – пример, образец) естествознания и всей современной, постнеклассической науки.

Синергетика показала, что, с одной стороны, сложноорганизованные системы имеют собственные сценарии развития, зависящие от свойств самой системы; навязать извне тот или иной вариант развития системе невозможно. С другой стороны, любой эволюционный процесс предполагает альтернативные варианты развития, изучая которые вместе со свойствами системы можно определить оптимальный сценарий развития системы и с помощью флуктуации направить развитие системы по выбранному пути.

Философию всегда волновало значение человека как индивида и его место в обществе. Идея неравновесного состояния системы как необходимого условия развития имеет существенное значение для анализа современных социальных процессов. В частности, она разрушает традиционный акцент на единообразии, порядке, стабильности, достигающемся в закрытом равновесном обществе. Неравновесное общество является открытым обществом, в котором происходят интенсивные процессы взаимодействия с внешней средой, обмен социальными, научными и культурными ценностями. Развитие социальной системы обеспечивается с помощью активного часто спонтанного творчества субъектов гражданского общества; социальный и политический плюрализм не ведут к разрушению системы, а закладывают основание ее самоорганизации.

В критических точках (точках бифуркации) неустойчивости социальных систем деятельность каждого человека или группы лиц может иметь решающее значение в макросоциальных изменениях. Возрастает ответственность человечества за судьбу природы и общества.

Мы определили философскую сущность мира, основой которой является естественнонаучная картина бытия. Однако существуют полезные для философского осмысления и иные подходы к миропониманию. В частности, таким подходом является синергетика. Синергетика относительное молодое научное направление и взгляд его на сущность мира представляется интересным. Одним из основателей этого направления является И.Р. Пригожин. Синергетика - теория случайностей, теория хаотических процессов, трактуемая как самоорганизация. Как она соотносится с диалектикой, каким образом идеалистическое и материалистическое восприятие мира уживается с синергетическим представлением о его происхождении - это вопросы, которые стоят осмысления. Смотря по-разному на мир, мы полнее отражаем в нём себя и его в себе. Пригожин Илья Романович (1917-2003 гг.), учёный, мыслитель, философ, естествоиспытатель, специалист в области химии, физики, биологии. Лауреат Нобелевской премии по химии, коренной москвич. Родился в Москве 25 января 1917 г. в интеллигентной русской семье: отец - инженер-химик, мать - музыкант. Мама рано приобщила Илью к игре на пианино: ноты он научился читать раньше, чем слова. Семья, после Октябрьского 1917 г. большевистского переворота, не признав его, ещё несколько лет прожила в России, но в 1921 г. эмигрировала в Литву, затем перебралась в Германию. В 1929 г. поселилась в Бельгии. В молодости Илья интересовался историей и философией, однако будущее связывал с профессией концертирующего пианиста, но судьба распорядилась по-своему. Начальное и среднее образование он получал в школах Берлина и Брюсселя, в совершенстве владел немецким и французским языками. Затем изучал химию в Свободном университете Брюсселя, где увлёкся термодинамикой - наукой, связанной с тепловой и иными формами энергии. В 1939 г. получил степень бакалавра химических и физических наук. В 1941 г. защитил диссертацию на тему «О значении времени и превращениях в термодинамических системах», за которую через два года был удостоен докторской степени. В 1947 г. его избирают профессором физической химии в этом университете и он в течение 14 лет читает в нём курс физической химии. В 1962 г. Пригожина назначают директором Солвеевского международного института физики и химии в Брюсселе. В 1967 г. он основывает Центр статистической механики и термодинамики при Техасском университете в Остине. Пригожина назначают в нём директором и присваивают Центру его имя. Он работает одновременно и в Брюсселе, и в Остине. В 1977 г. «за работы по термодинамике необратимых процессов, особенно за теорию диссипативных структур» Илье Пригожину присуждается Нобелевская премия по химии. Согласно его взглядам направленность во времени является фундаментальным свойством всех систем: физических, химических, биологических и социальных; существует естественное стремление к хаосу, которое не ведёт к утрате гармонии; хаос конструктивен и создаёт новый порядок. За многочисленные работы по естественным, социальным и философским наукам он награждается рядом элитарных знаков: золотой медалью Сванте Аррениуса Шведской королевской академии наук (1969), медалью Баурка Британского химического общества (1972), медалью Котениуса Германской академии естествоиспытателей «Леопольдина» (1975), медалью Румфорда Лондонского королевского научного общества. И. Пригожин является иностранным членом Американской академии наук и искусств, Польского и Американского химических обществ и ряда других организаций. Ему присвоены почётные звания профессора университетов НьюКасл-АпонТайна, Пуатье, Чикаго, Бордо, Упсалы, Льежа, Экс-ан-Прованса, Джорджтауна, Кракова и Рио-де-Жанейро. Сам Илья Романович неоднократно бывал в России, читал лекции. В 2007 г. на заседании учёного совета МГУ им. М.И. Ломоносова его ученику - профессору Солвеевсого института физики и химии, доктору Иоаннису Антониу был вручён диплом и медаль почётного профессора МГУ. В России издана книга И. Пригожина «Время, хаос, квант», в соавторстве с И. Стенгерсом (1994). Скончался Илья Романович, находясь в Центральном госпитале Брюсселя. Прежде чем мы коснёмся взглядов И.Р. Пригожина в области синергетики, и на их основе понимания им картины мира, целесообразно коротко остановиться на историко-философских истоках понятия «хаос», которое и определило суть синергетики. Понимание «хаоса» занимало предметное место уже в мировоззрении античных философов, в частности, Платона и его школы. Не вдаваясь в детали, отметим лишь два сформулированных им положения, сохраняющих своё значение при использовании понятия «хаос» в современной физике. По представлениям Платона и его учеников, хаос (в современном звучании этого слова) есть такое состояние системы, которое остаётся по мере устранения возможностей проявлений её свойств. С другой стороны, из системы, находящейся изначально в хаотическом состоянии, возникает всё, что составляет содержание мироздания. Роль созидающей силы - творца - Платон отводил Демиургу, который превратил изначальный хаос в космос. Таким образом, все существующие структуры порождаются из хаоса. Понятие «структура» у Платона является обобщённым: структура представляется им как некий вид организации и связи элементов системы, при этом может оказаться важным не сам конкретный вид элементов системы, а совокупность их взаимоотношений. В таком представлении, система, как целостный структурированный состав, им не виделась, потому и была «просто» хаотична. Платоновские размышления блестяще развил в XVIII в. И. Кант, философски определив суть происхождения Вселенной. Согласно его космогонической теории Вселенная из состояния хаоса, вследствие сил притяжения, приходит в упорядоченное состояние, представленное небесными телами, планетами. Позднее, исходя из античных представлений о системе и структуре в хаотическом единстве элементов, физики, понятия «хаос» и «хаотическое движение», сделали фундаментальными, однако полной определённости в них не внесли. С учётом этих философских взглядов на процессы, объясняющие хаотическую природу мира, зарождались мысли и естественнонаучные работы И. Пригожина. Отметим в них принципиальные моменты, касающиеся основ термодинамики - раздела физики, изучающего наиболее общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Принципы термодинамики были сформулированы в середине XIX в., после изобретения паровой машины, когда взаимодействие тепловой, электрической и механической работы (энергии) привлекло к себе значительный интерес. Согласно одной из версий первого начала (закона) термодинамики, представляющего собой принцип сохранения энергии, в любой закрытой системе энергия не исчезает и не возникает, а переходит из одной формы в другую. Второе начало термодинамики (закон возрастания энтропии) описывает тенденцию систем переходить из состояния большего к состоянию меньшего порядка. Энтропия - мера беспорядочности (разупоря- доченности) системы. Чем больше разупорядоченность, тем выше энтропия. В XIX в. американский математик и физик Джозайя Уиллард Гиббс разработал теорию статистической термодинамики для обратимых систем в условиях равновесия. Профессор Теофил де Дондер - учитель И. Пригожина в Свободном университете и основатель Брюссельской школы термодинамики, сформулировал теорию неравновесных необратимых систем. Возникает вопрос: что собою представляет обратимое равновесие? Примером обратимого равновесия может служить таяние кусочка льда при температуре, которая лишь немного превышает температуру замерзания воды. Энтропия этого кусочка льда повышается по мере того, как кристаллы льда на его поверхности тают, превращаясь в воду. Одновременно энтропия плёнки воды на поверхности льда понижается, поскольку тепло из неё забирается на таяние льда. Этот процесс можно сделать обратимым, понизив температуру системы до точки замерзания воды: вода на поверхности кристаллизируется, и энтропия льда понижается, а энтропия плёнки воды повышается. В каждом процессе (таяния и замерзания) при температуре замерзания воды или близкой к ней общая энтропия системы остаётся неизменной. Примером необратимой неравновесной системы может служить таяние кубика льда в стакане с водой при комнатной температуре. Энтропия кубика льда повышается до тех пор, пока не растают все кристаллы. По мере того как тепло поглощается сначала из всего объёма воды в стакане, а затем из окружающего воздуха, энтропия всей системы возрастает. И. Пригожина прежде всего интересовали в термодинамике неравновесные специфические открытые системы, в которых либо материя, либо энергия, либо и то, и другое обмениваются с внешней средой в реакциях (разделение материи и энергии - синергетический подход Пригожина). При этом количество материи и количество энергии либо количество материи и количество энергии со временем увеличивается или уменьшается. Здесь читателям необходимо иметь в виду два важных методологических положения философии, которые интерпретированы Пригожиным по-своему. Во-первых, материя и энергия предстают у него как самостоятельные сущности, что в принципе невозможно, так как материя - это объективная реальность, а энергия (физическая, химическая, биотическая, социальная) - форма движения материи; во-вторых, в этом подходе искажается принцип сохранения материи в процессе изменения её форм. Чтобы объяснить поведение систем, далёких от равновесия, Пригожин сформулировал теорию диссипативных структур. Считая, что неравновесностъ может служить источником организации и порядка, он представил диссипативные структуры в терминах математической модели с зависимыми от времени нелинейными функциями, которые описывают способность систем обмениваться материей и энергией с внешней средой и спонтанно себя рестабилизировать. Ставший теперь классическим пример диссипативной структуры в физической химии известен как нестабильность Бернарда. Такая структура возникает, когда слои легкоподвижной жидкой среды подогреваются снизу. При достаточно высоких температурных градиентах тепло передаётся через среду как обычно, и большое число молекул в жидкости образуют специфические геометрические формы, напоминающие живые клетки. Было сделано предположение, что и общество так же, как биологическая среда, являет собой пример диссипативных и недиссипативных структур. В 1952 г. английский математик Алан М. Тьюринг первым предположил, что термодинамические нестабильности типа тех, какие были выдвинуты И. При- гожиным и его коллегами, характерны для самоорганизующихся систем. В 1960-1970-е гг. Пригожин развил созданную им теорию диссипативных структур и описал образование и развитие эмбрионов. Критические точки раздвоения в его математической модели соотносятся с точкой, в которой биологическая система в хаосе становится последовательной и стабилизированной. И. Пригожин предполагал, что его теории и математические модели систем, которые зависят от времени, могут быть применимы к эволюционным и социальным схемам, характеристикам автогужевого транспорта и деятельности в отношении использования природных ресурсов, а также к таким областям, как рост населения, метеорология и астрономия. Стало ясно, что фундаментальная проблема, которой занимался И. Пригожин, не имеет дисциплинарных границ, она и социальная, и более того - она философская. Однако в отношении её философского значения стоит быть осторожными, так как синергетика не обладает качеством всеобщности. В своём творчестве И. Пригожин соотносил проблемы современной термодинамики с интерпретацией таких категорий как необратимость и время. Феномен необратимости он объяснял в рамках научной рациональности, используя как классическую, так и неклассическую методологию. В частности, он не считал, что для созидательной деятельности природы нужна «другая наука». Однако был убеждён, что наука находится в самом начале своего пути, и, что физика преодолевает ограничения, обусловленные её происхождением. С предельно общих позиций, а именно с позиций расширения и более глубокого проникновения в суть используемых наукой методов Пригожин подошёл к реализации программы, которую он назвал «переоткрытие времени». Специалисты в области синергетики отмечали, что пригожинская формулировка законов природы включает в себя несводимые вероятностные представления, что подразумевает переход от гильбертова пространства к обобщённым пространствам. Поэтому в это описание вошёл целый класс неустойчивых хаотических систем, связываемых с понятием вероятностного времени, а, следовательно, и нарушением симметрии между прошлым и будущим, а класс устойчивых и симметричных во времени систем стал их предельным случаем. При исследовании сущности времени И. Пригожин был солидарен по ряду позиций с известными историками - М. Блоком и Ф. Брорделем. Если Пригожин обстоятельно показывал, что физика должна отказаться от многих прежних методологических установок и в этом смысле «обновиться», то М. Блок высказывал аналогичное суждение по отношению к истории. Он отмечал, что, как серьёзное аналитическое знание, история ещё молода. И. Пригожин уделял предметное внимание рассмотрению такого важного методологического вопроса как взаимосвязь старых и новых представлений в науке. Рассуждая в этом ключе, он показывал, что новые подходы к науке в ряде случаев могут быть осуществлены на базе своеобразного синтеза некоторых установок классики и более разносторонних и широких взглядов. Примером этому у него служила интерпретация такого понятия как «время Ляпунова». Он полагал, что «время Ляпунова» позволяет ввести внутренний «масштаб времени» для характеристики систем, т.е. интервал, в течение которого выражение «две одинаковые» (одни и те же) системы, соответствующие одним и тем же начальным условиям, сохраняют смысл. После достаточно продолжительного по сравнению со временем Ляпунова периода эволюции, память о начальном состоянии системы полностью утрачивается. В этом смысле хаотические системы характеризуются временным горизонтом, который определяется временем Ляпунова. Для того чтобы увеличить интервал времени, в течение которого мы можем предсказывать траекторию, необходимо сузить класс систем, называемых «одними и теми же». Пригожин не предлагал отказаться от таких характеристик как тождественность, но показывал место этих характеристик в том или ином процессе, взаимосвязь этих характеристик в различных процессах, а также их взаимосвязь с новыми понятиями, например, таким как временной горизонт. Признавая сложность и многообразие свойств такого явления как время, Пригожин считал целесообразным не только осуществлять синтез новых и традиционных методов в той или иной науке, но и устанавливать тесные междисциплинарные контакты. При этом им было отмечено, что ни одна наука не может быть подменена другой. Пригожин по отношению к взаимосвязи физики и гуманитарного знания отмечал, что пример физики может прояснить, но не решать проблемы, стоящие перед людьми. Согласно его мироощущениям, отметим, что синергетический подход предполагает один из моментов связи в системе мира, который может быть использован наряду с другими теоретическими объяснениями общей картины универсума и процессов, происходящих в нём. В частности, такие примеры уже есть, они обусловлены реальными хаотическими явлениями всколыхнувшими человечество в конце первой декады XXI столетия: имеется в виду экономический кризис, потрясший все страны планеты. Основываясь на синергетическом методе возможно производить математические расчёты, которые позволят реально прогнозировать экономические потрясения, цикличные по своему характеру. Цикличность экономических кризисов была обоснована ещё в первой четверти XX в. российским экономистом, профессором Московской сельскохозяйственной академии, директором Конъюнктурного института при Наркомфине (1920-1928 гг.) Н.Д. Кондратьевым (1892-1938 гг.), репрессированным большевиками за отстаивание своего открытия. Большевики не признавали возможность кризисов «социалистической экономики», а Кондратьев гениально предсказал объективный полувековой цикл экономических процессов: депрессия (хаос) - оживление - бурный подъём - спад - депрессия (хаос). Этому экономическому циклу коммунистические указы помешать не могут, так как он закономерен для любой политической системы. Впоследствии на концепции длинных волн экономического развития Кондратьева сформировалось целое направление в мировой науке, а протекание экономических кризисов подтвердило справедливость выводов Н. Кондратьева. В современное время в МГУ им. М.В. Ломоносова создан Институт математических исследований сложных систем имени И.Р. Пригожина, в котором ведётся работа, позволяющая повысить точность и надёжность прогнозов развития экономики, в том числе и предвидения кризисов (хаоса). В основе этой работы - циклы Кондратьева. В своё время он не смог завершить разработку формулы хаоса (был расстрелян), а в настоящее время такая возможность появилась, так как на рубеже веков разработана математическая теория хаоса, позволяющая применить её к экономике, в том числе в целях точного прогнозирования кризисов. ВОПРОСЫ САМОКОНТРОЛЯ 1. «Универсум» как философское понятие. 2. «Материя» как философская категория. 3. Понятие «субстанции». 4. Сущность философского отношения «универсум - человек». 5. Атомистическая теория субстанции. 6. Идеалистическое представление картины мира. 7. Материалистическое представление картины мира. 8. Суть понятий «вселенная», «метагалактика», «галактика». 9. Роль естествознания в философии. 10. Диалектическая картина мира. 11. Метафизическая картина мира. 12. Метафизика и диалектика как философская методология. 13. Механистическое восприятие действительности. 14. Понятие «структуры» и «системы». 15. Виды и уровни материальных систем. 16. Типы материальных систем. 17. Целостность материальных систем. 18. Пространство - атрибут материи. 19. Время - атрибут материи. 20. Сущность единства мира. 21. Философские концепции пространства и времени. 22. Общие и особенные свойства пространства и времени. 23. Пространственно-временные особенности в частнонаучных исследованиях. 24. Синергетическое представление о мире. 25. Учёный и мыслитель И.Р. Пригожин. ЛИТЕРАТУРА Аскин Я. Проблема времени. Её физическое истолкование. М., 2000. Ахундов М. Пространство и время в физическом познании. М., 1999. Биографический энциклопедический словарь. М., 2000. Валентинов Альберт. И всё-таки она плоская // Российская газета. 2000. 26 мая. Горохов В.Г. Концепция современного естествознания и техники. М., 2000. ДахинА.В. Формационное сомоопределение универсума. Н. Новгород, 1992. Ч. 1. Девис П. Пространство и время в современной картине Вселенной. М., 1979. Еремеева А. Астрономическая картина мира и её творцы. М., 1984. Зеленое Л.А. Система философии: Монография. Нижний Новгород, 1991. Зеленое ЛА. Введение в общую методологию: Монография. Н. Новгород, 2002. Капица С.П. и др. Синергетика и прогнозы будущего. М., 2003. Карпенков С.Х. Основные концепции естествознания. М., 1998. Кандыбо Г.В., Стражников ВА. Материя, движение, техника. Минск, 2001. Ленин В.И. Материализм и эмпириокритицизм // Поли. собр. соч. Т. 18. Микиша А.М. и Орлов В.Б. Толковый математический словарь. Основные термины: около 2500 терминов. М., 1989. Петров В.П. Философия. Курс лекций. Н. Новгород, 2010. Пригожий И., Стенгерс И. Время, хаос, квант. М., 1994. Рейхенбах Ганс. Философия пространства и времени / Пер. с англ. Ю.Б. Молчанова; Общ. ред. А.А. Логунова; Послесловие И.А. Акурина. М., 1985. Синергетическая парадигма. Многообразие поисков и подходов. М., 2000. Философия: Курс лекций: Учебное пособие для студентов вузов / Науч. руководит. В.Л. Калашников. М., 1997. Физический энциклопедический словарь. М., 1985. Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. М., 1965. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965. Энгельс Ф. Анти-Дюринг. Переворот в науке, произведённый господином Евгением Дюрингом // Маркс К., Энгельс Ф. Соч. 2-е изд. Т. 20.

Большинство процессов в природе носит необратимый характер, но долгое время физика изучала только обратимые процессы. В классической механике достаточно было задать систему координат и скорость движущегося тела для того, чтобы определить характер его движения. С помощью математических вычислений, зная начальные условия, можно было определить положение тела в любой момент: в прошлом, в настоящем и в будущем. Время в классической науке не играло никакой роли. Впервые фактор времени ученые учли при описании тепловых процессов в термодинамике. В науку было введено понятие энтропии – меры беспорядка в системе.

Классическая термодинамика сформулировала несколько принципов, которые привели к важным мировоззренческим выводам. Первое начало термодинамики утверждает, что количество теплоты, сообщенное телу, увеличивает его внутреннюю энергию и идет на совершение им работы. Иными словами, любая система обладает внутренней энергией теплового движения молекул и потенциальной энергией их взаимодействия, и при всех превращениях выполняется универсальный закон сохранения энергии. Первое начало термодинамики отвергает возможность создания вечного двигателя.

Второе начало термодинамики утверждает, что невозможно осуществить работу за счет энергии тел, находящихся в состоянии термодинамического равновесия, энтропия замкнутой системы постепенно возрастает и достигает максимума в состоянии теплового равновесия. То есть термодинамические процессы необратимы, предоставленная самой себе система стремится к тепловому равновесию, в котором ее температура сравняется с температурой окружающей среды. В системе, достигшей термодинамического равновесия, без внешнего вмешательства невозможны никакие процессы. Второе начало термодинамики часто формулируют так: тепло не может самопроизвольно перейти от холодного тела к горячему. Второе начало термодинамики называют также законом возрастания энтропии.

Распространение второго начала термодинамики на всю Вселенную, которую классическая наука и философия понимали как закрытую систему, привело к созданию теории тепловой смерти , в середине XIX в. ее разработали Уильям Томсон и Рудольф Клаузиус . Согласно этой теории, все процессы в мире ведут к состоянию наибольшего равновесия, т.е. к хаосу, энтропия Вселенной увеличивается. Теория тепловой смерти утверждала, что со временем все виды энергии во Вселенной превратятся в тепловую, и она не будет больше изменяться и преобразовываться в другие формы. Состояние теплового равновесия, которое в конце концов неизбежно наступит, будет означать смерть Вселенной, при этом общее количество энергии в мире останется тем же самым. С точки зрения авторов теории тепловой смерти наличие в нашей уже давно существующей Вселенной многообразных форм энергии и движения необъяснимо. Теория тепловой смерти Вселенной подводила ученых к выводу о существовании таинственной силы, которая периодически выводит мир из теплового равновесия. По сути дела, теория Томсона и Клаузиуса вела к представлению о Боге, который вновь и вновь творит Вселенную из хаоса.

Сразу же после создания теории тепловой смерти ученые и философы подвергли ее критике. В частности, появилась флуктуационная теория австрийского физика Людвига Больцмана , согласно которой Вселенная выходит из состояния равновесия с помощью внутренне присущих ей флуктуаций. Кроме того, критики теории тепловой смерти Вселенной говорили, что неверно распространять второе начало термодинамики на весь мир, а последний нельзя рассматривать как замкнутую систему с ограниченным числом элементов. Наиболее последовательным опровержением теории тепловой смерти Вселенной в конце XX в. стала синергетическая концепция Ильи Пригожина и Германа Хакена . Однако она появилась не на пустом месте, к ней привели столетние поиски и исследования в физике, химии и биологии.

Первыми против представлений о необратимости процессов в классической термодинамике восстали биологи. Они обратили внимание, что понятия энтропии явно конфликтуют с тем, что происходит в живой природе. Вопреки законам возрастания энтропии эволюция живых систем приводит к их усложнению и повышению организации. Отчетливо противоречие физических и биологических представлений было осознано в конце XIX в. после создания эволюционной теории Чарльза Дарвина.

Конфликт физических и биологических представлений удалось разрешить после того, как наука обратилась к понятию открытой системы. Закрытые системы , которые классическая физика рассматривала как естественные, не обмениваются энергией и веществом с внешним миром, все процессы в них движутся от упорядоченности через равновесие к хаосу. Такие системы стремятся к максимальной неупорядоченности. Основными характеристиками процессов в замкнутых системах являются равновесность и линейность.

Открытые системы , напротив, обмениваются энергией, веществом и информацией с внешним миром, в них при определенных условиях могут появляться новые структуры, которые повышают степень организации всей системы. Основными характеристиками процессов в открытых системах являются неравновесность и нелинейность.

Изучением открытых неравновесных систем как раз и занимается синергетика . Синергетика возникла на стыке физики и химии в 70-е гг. XX в., а затем приобрела статус междисциплинарного подхода. Термин "синергетика" происходит от греческого слова sinergia – "сотрудничество", "содействие". Синергетика, так же как кибернетика, изучает системы с обратной связью, но в отличие от кибернетики, которая рассматривает стабилизацию и динамическое равновесие в самоорганизующихся системах, синергетика исследует возникновение новых структур за счет разрушения старых.

В современной науке синергетика является наиболее общей теорией самоорганизации и изучает закономерности во всех типах материальных систем, она претендует на открытие универсальных механизмов самоорганизации в живой и неживой природе. Как утверждает ее создатель Герман Хакен, принципы самоорганизации распространяются от молекулярной физики до эволюции звезд, от сокращения мышц до вспучивания металлических конструкций.

Исходным принципом синергетической концепции является различие процессов в открытых и закрытых системах. По мнению ее создателей, именно открытые системы, а не закрытые, как считала классическая физика, являются универсальными. Искусственное может быть обратимым, а естественное непременно содержит элементы случайности и необратимости. Система называется самоорганизующейся, если она без специального воздействия извне обретает новую пространственную, временную или иную структуру. Главные свойства открытых самоорганизующихся систем – неустойчивость и нелинейность развития.

Опираясь на это знание, синергетика предлагает следующее объяснение механизма возникновения порядка из хаоса. Пока система находится в состоянии термодинамического равновесия, все ее элементы ведут себя независимо друг от друга и на создание упорядоченных структур неспособны. В какой-то момент поведение открытой системы становится неоднозначным. Та точка, в которой проявляется неоднозначность процессов, называется точкой бифуркации (разветвления). В точке бифуркации изменяется роль внешних для системы влияний, ничтожно малое воздействие приводит к значительным и даже непредсказуемым последствиям. Между системой и средой устанавливается отношение положительной обратной связи, т.е. система начинает влиять на окружающую среду таким образом, что сама формирует условия, которые ее изменяют. Таким образом система противостоит разрушительным влияниям среды и меняет условия своего существования.

Под влиянием энергетических взаимодействий с окружающей средой в открытых системах возникают так называемые эффекты согласования и кооперации, когда различные элементы начинают вести себя в унисон друг с другом. Такое согласованное поведение синергетика называет когерентным. Как следствие, происходят процессы упорядочения, возникновения из хаоса новых структур. После возникновения новая структура, в синергетике ее называют диссипативной, включается в дальнейший процесс самоорганизации материи. Диссипативные структуры возникают за счет рассеяния (диссипации) энергии, которую система уже использовала, и получения новой энергии из окружающей среды. Диссипативная структура как бы извлекает порядок из окружающей среды, повышает собственную внутреннюю упорядоченность, увеличивает хаос и беспорядок во внешнем мире.

Таким образом, внешние взаимодействия оказываются фактором внутренней самоорганизации систем, которые, в свою очередь, помогают самоорганизации других систем. То есть взаимодействие системы со средой становится условием ее эволюции. Направление развития системы после прохождения точки бифуркации невозможно предсказать, ведь ключевую роль в развитии играют случайные обстоятельства. "Будущее при нашем подходе, – пишут Илья Пригожин и Изабелла Стенгерс в книге “Порядок из хаоса”, – перестает быть данным; оно не заложено более в настоящем. Это означает конец классического идеала всеведения". Представление об объективности случайных факторов становится фундаментальным принципом современной науки.

Синергетический подход позволяет ответить на вопрос, почему вопреки действию закона энтропии в мире царят порядок и организация. К тому же хаос понимается как особый вид регулярной нерегулярности и более не рассматривается как разрушительное состояние. Хаос созидателен, поскольку развитие и самоорганизация систем происходят через хаотичность и неустойчивость. Синергетика утверждает, что законы самоорганизации действуют во всем мире, на всех уровнях материи, поэтому синергетический подход позволяет преодолеть разрыв между живой и неживой природой и объяснить происхождение жизни через самоорганизацию неорганических систем. Создатель концепции Илья Пригожин считает, что синергетический взгляд на мир меняет наше представление о случайности и необходимости, трансформирует привычное представление о времени и позволяет иначе понять сущность энтропии. Синергетический подход получил признание не только в естествознании, но и в гуманитарных науках. Более того, синергетика постепенно вырастает из статуса междисциплинарного научного исследования и превращается в новую мировоззренческую парадигму.

СИНЕРГЕТИКА – междисциплинарное направление научных исследований, возникшее в начале 70-х гг. и ставящее в качестве своей основной задачи познание общих закономерностей и принципов, лежащих в основе процессов самоорганизации в системах самой разной природы: физических, химических, биологических, технических, экономических, социальных. Под самоорганизацией в синергетике понимаются процессы возникновения макроскопически упорядоченных пространственно-временных структур в сложных нелинейных системах, находящихся в далеких от равновесия состояниях, вблизи особых критических точек – точек бифуркации, в окрестности которых поведение системы становится неустойчивым. Последнее означает, что в этих точках система под воздействием самых незначительных воздействий, или флуктуаций, может резко изменить свое состояние. Этот переход часто характеризуют как возникновение порядка из хаоса. Одновременно происходит переосмысление концепции хаоса, вводится понятие динамического (или детерминированного) хаоса как некой сверхсложной упорядоченности, существующей неявно, потенциально, и могущей проявиться в огромном многообразии упорядоченных структур.

Синергетика предполагает качественно иную картину мира не только по сравнению с той, которая лежала в основании классической науки, но и той, которую принято называть квантово-релятивистской картиной неклассического естествознания первой половины 20 в. Происходит отказ от образа мира как построенного из элементарных частиц – кирпичиков материи – в пользу картины мира как совокупности нелинейных процессов. Синергетика внутренне плюралистична, как плюралистичен тот интегральный образ мира, который ею предполагается. Она включает в себя многообразие подходов, формулировок. Наиболее известный из них теория диссипативных структур, связанная с именем И.Пригожина, и концепция немецкого физика Г.Хакена, от которой идет само название «синергетика». В формулировке Пригожина становление синергетики рассматривается в общем контексте начавшегося во второй половине 20 в. процесса фундаментального пересмотра взглядов на науку и научную рациональность. Суть этого процесса состоит в «возрождении времени» в современном естествознании и начале «нового диалога человека с природой».

Литература:

1. Хакен Г. Синергетика. М., 1980;

2. Пригожин И. От существующего к возникающему: время и сложность в физических науках. М., 1985;

3. Пригожин И. , Стенгерс И. Порядок из хаоса. Новый диалог человека с природой. М., 1986;

4. Аршинов В.И. Синергетика как феномен постнеклассической науки. М., 1999;

5. Haken H. Principles of Brain Functioning. Cinergetic Approuch to Brain Activity, Behavior and Cognition. B., 1996.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении